Control Joint Spacing vs Shrinkage

HISTORICAL LOOK AT MOISTURE CONTROLLED UNITS \& JOINT SPACING
In May 1990, FC\&PA published the following note in the Shapes \& Sizes Manual on page 2:
Note: "Please be advised that due to the high rainfall and humidity in Florida, Type I Moisture controlled
units Are not available. Control joint spacing and location should be designed utilizing Type II non-moisture
controlled units."
Subsequently the moisture controlled "Type 1", designation was removed from ASTM C90.

FC\&PA Published recommended joint spacing, shown here. \quad| Florida Concrete \& Products Association Recommendations |
| :--- | :--- | :--- | :--- | :--- |
| MAXIMUM HORIZONTAL SPACING OF VERTICAL CONTROL JOINTS |
| IN CONCRETE MASONRY WALLS (feet) |

Note for Engineers:

It is recommended that the project should be designed to take into account the shrinkage requirements of ACI 530 which calls for designing for $1 / 2$ of the potential linear shrinkage or $3 / 16$ " in 100 lf.

Page C-34 Ref 4.2.5.1 (TMS 402-16)

CONCRETE MASONRY

$\mathrm{K}_{\mathrm{m}}=0.5 \mathrm{~S} \mathrm{~L}$

Section 4.2.5 Notation (TMS 402-16
K_{m} : coefficient of shrinkage of concrete masonry
(The value that should be considered in the design of the structure)
$\mathrm{S}_{\mathrm{L}}=$ total linear drying shrinkage of concrete masonry units determined in accordance with ASTM C 426

What is a good value for " S_{L} " in Florida?
You may want to check with your concrete producer; however, a good general value for S (for normal weight units-125 pounds per cubic foot or more, oven dry weight for concrete), is 0.032%

Example Coefficient of shrinkage for Type II masonry units:

$$
\begin{aligned}
\mathrm{K}_{\mathrm{m}} \quad & =0.5 \mathrm{~S}_{\mathrm{L}} \\
& =0.5(.032 \%) \\
& =.016 \%
\end{aligned}
$$

How much shrinkage in 100 feet? $\simeq 3 / 16$ "!

Potential linear shrinkage for typical florida masonry units for 100 inear feet of wall:

$$
\begin{aligned}
& =0.016 \%\left(100^{\prime}\right)\left(12^{\prime}\right) \\
& =0.016 \% \times 1200 \\
& =0.192^{\prime \prime}=\text { about } 3 / 16^{\prime \prime}\left(3 / 16^{\prime \prime}=0.1875\right)
\end{aligned}
$$

