Association of Florida

Designing Concrete Masonry Walls to Resist Moisture Penetration

Masonry Professional Education Series

Don Beers, PE, GC

Don Beers, PE, GC is currently the staff engineer for the Masonry Association of Florida (since 2009) and President of Adrian Engineering, Inc. Previous to 2009 Don acted as Engineering Services Manager with Rinker Materials for 29 years. He is a graduate of the University of South Florida in Civil and Structural Engineering and is a licensed engineer and general contractor in Florida. Has served as Chairman of the National Concrete Masonry Association's Codes Committee, the Florida Concrete & Products Association's Block Committee and a board member for The Masonry Society (TMS).

don@floridamasonry.com

ABOUT US

The Masonry Association of Florida (MAF) is a not-for-profit trade association dedicated to expanding the market share of masonry construction in Florida. Masonry construction dominates the construction industry because of its adaptability to the Florida climate. One of the most durable building products available, masonry resists storms, termites and mold, while reducing energy costs, maintenance and noise. The MAF is a coalition of Florida masonry industry professionals who believe it's time to bring our industry together.

2020 Copyright Masonry Association of Florida. All rights reserved.

www.floridamasonry.com

FLORIDA MASONRY APPRENTICE EDUCATIONAL FOUNDATION

Session Handouts

Associated Effects of Moisture

- Efflorescence
- Corrosion of Metals & Reinforcing
- Staining/Mold/Mildew
- Leaks
- Rotting & Disintegration of Insulation/Wood/etc.

Protect Your Family From Mold!

Don't Feed the Mold!

Breathing Problems Anyone? Don't Feed the Mold!

Mold on Wood But NOT on Masonry

Don't Feed the Mold!

Moisture and Mold Summary

- Masonry is not a food source for mold!
- Masonry is not damaged by moisture!

Forces of Moisture Migration

- Capillary Action
- •Gravity
- Pressure
 - Wind driven rain
 - Differential pressure _

Design Considerations: Basic Concrete Masonry Wall Types

Double Wythe Cavity

Single Wythe

Stucco

Double Wythe Cavity Wall System

Worlds Best Wall System

Double Wythe Cavity Wall System

Worlds Best Wall System

WHY?

Double Wythe Cavity Wall System

- Insulation Envelope (No Thermal Bridging)
- External and Internal Mass
- Moisture Control (Dew Point Control) (Desiccant Action of Interior Wythe)
- Drainage (4 Separate Barriers)
- Wall Cracking (or Jointing) in Either Wythe Does Not Lead to Wall Leakage
- Maintenance (Life Cycle Cost)
- Beauty
- Flexibility (Both Design and Construction)

Double Wythe Cavity Wall System

- Inside Block Surface Can Remain Exposed
- Strength
- Fire Proof (Reduces Insurance Cost)
- Rot Proof
- Termite Proof
- Corrosion Proof
- Sound Attenuation is Fantastic
- LEED Points (Environmental)
- Did I say Life Cycle Cost?

Cavity Wall Detail

Flashing Locations

Needed anywhere the downward vertical path of water to the weeps is interrupted:

- Base and foundation
- Lintels
- Bond beams
- Parapets
- Intermediate roofs

Good Flashing Detail – Cavity Wall

Poor Detail

Drip Edge

End Dams

Flashing Materials - Metals

Material	Advantages	Disadvantages				
Stainless Steel	Durable, non staining	Hard to form				
Cold-Rolled Copper	Flexible, durable, easy to work with	Damaged by excessive flexing and can stain				
Galvanized Steel	Easy to paint and durable	Corrodes early in acidic and salty air				

Flashing Materials Plastic and Rubber Compounds

Material	Advantages	Disadvantages
EPDM	Flexible, easy to form, non- staining	Aesthetics, full support recommended
Rubberized asphalt	Fully adhered, self healing, flexible, easy to form and join	Full support required, degrades in UV light, metal drip edge required

Pause for Questions

Flashing Materials Plastic and Rubber Compounds

Material	Advantages	Disadvantages
PVC	Easy to form and join, non- staining, low cost	Easily damaged, full support required, metal drip edge required, questionable durability

Weep Holes

- Cotton sash cord for drainage path (remove after wall is laid up)
- Partially open head joints (preferred)

Weep Vent with Top Flange

Weeps & Drainage

Window Sills- ³/₄" Slope Minimum

Masonry Cavity Wall – Orlando Winter

Exterior XPS Insulation Attached Directly to Block

_	ComponentNemo	Thickness	D Value	Don	1	Interface	Tempo Actual	erature Dewpnt	Accum (cz.klay-sqft)
_	Component Name	Inickness	R-value	Rep	-	-A	78.00	54.95	0.000
A	Interior Air Film	0.100	0.68	0.001	-	AB	74.50	54.95	0.000
B	Latex Paint 2 Coat	0.050	0.01	0.500		BC	74.45	51.65	0.000
C	Block Cinder & Gravel	8.000	1.10	0.400		CD	68 70	48.72	0.000
D	CAVITYMATE Plus Ins	1.500	7.50	1.350		DE	30.10	36.01	* 0.003
E	Wall Air Space NonRefl	0.750	1.01	0.006		EE	24.00	35.04	* 0.005
F	Brick Face 4 in	4.000	0.80	1.300			24.99	45.42	0.000
G	Outside Air Film Winter	0.100	0.17	0.001	-		20.07	15.42	0.000
H					-	- 60	20.00	15.40	0.000
					-	- HI			
					-	– IJ			
J					-	_ JK			
K					-	KL		*****	
L									
	TOTAL	14.500	11.27	3.558		_			

Single Wythe Walls

Ground, split, scored, tumbled, fluted, slump, glazed – the options are endless...

Best Performance Is Achieved By Redundancy

Level of Defense

Internal Protection

Integral Water Repellants

Integral Water Repellents

- An admixture which does not alter the finished appearance of the block.
- Lasts the lifetime of the unit.
- Cuts down on possibility of efflorescence.
- Incorporate a compatible admixture into the mortar.

ASTM E 514 Test Method

- 3 ft x 4 ft Test Area
- Spray-bar at 0.23 gal linear ft/min
- Air pressure of 10 psf
- Simulates 62.5 mph wind-driven rain(at 5.5 in/hr)
- Test run for 4 to 72 hours

ASTM E 514 Wall Evaluation

- % Dampness on back (interior) face of wall
- Leakage through front face shell (water collected in cores and drained through weeps & flashing)

ASTM E 514 Test Method

Best Performance Is Achieved By Redundancy

Level of Defense

Internal Protection

Surface Protection

1 2a

Integral Water Repellants

Mortar Joints

ASTM C 270 Mortar Selection Guide:

- Exterior walls Type N (except high wind) (alternatively S or M)
- Below grade Type S (alternatively M or N)

Joint Profiles

The role of tooling and the effect of joint profiles

Concave

Weatherstruck

Flush

Raked

Best Performance Is Achieved By Redundancy

Level of Defense

Internal Protection

Surface Protection

1 2A 2B

Integral Water Repellants

Mortar Joints

Sealants & Coatings

Surface Protection: Clear Surface Treatments

- Acrylics form elastic film over surface. Quick drying. \$
- Silicone Resins good penetration. Drying time 4-5 hours.
- Silanes good penetration. More volatile. Can be applied to damp surfaces. \$\$
- Siloxanes similar benefits of silanes. Effective on wider variety of surfaces. \$\$

Best Performance Is Achieved By Redundancy

Level of Defense

Internal Protection

Surface Protection

Wall Drainage

3

Sealants & Coatings

Mortar Joints

Flashing, Weeps & Vents

Integral Water Repellants

Flashing Locations

Needed anywhere the downward vertical path of water to the weeps is interrupted:

- Base and foundation
- Lintels
- Bond beams
- Parapets
- Intermediate roofs

Flashing Detail at Unreinforced Cell

Through-Wall Single-Wythe Block Flashing

Best Performance Is Achieved By Redundancy

Level of Defense **Internal Protection** Integral Water Repellants **Mortar Joints** Surface Protection Sealants & Coatings Wall Drainage Flashing, Weeps & Vents **Control Joints Crack Control**

Location of Control Joints

- Abrupt changes in wall height
- Changes in wall thickness
- Above joints in foundations and floors
- Below joints in roofs and floors
- <u>½ the allowable joint spacing from</u> <u>wall corners</u>
- One or both sides of doors and windows.

Location of Control Joints

Control Joints should be located at the following points of weakness or high stress concentrations:

- 1. At all abrupt changes in wall height
- At all changes in wall thickness, such as those at pipe or duct chases and those adjacent to columns or pilasters.
- 3. Above joints in foundations and floors
- 4. Below joints in roofs and floors that bear on the wall
- 5. At a distance of not over one-half the allowable joint spacing from bonded intersections or corners.
- At one or both sides of all door and window openings unless other crack control measures are used such as joint reinforcement of bond beams.

CONTROL JOINT SPACING FOR MOISTURE CONTROLLED,

Control Joints

The 4 most Common Control joints

Mechanical Slip Connectors

CJ TEK 10-2C Table 1

1 #5 bar for 12' height of wall

Table 1—Recommended Control Joint Spacing for Above Grade Exposed Concrete Masonry Walls^A

Distance between joints not to exceed the lesser of: Length to height ratio or ft (m)

 $1\frac{1}{2}:1$

25 (7.62)

A Notes:

- Table values are based on the use of horizontal reinforcement having an equivalent area of not less than 0.025 in.²/ft (52.9 mm²/m) of height to keep unplanned cracks closed (see Table 2).
- 2. Criteria applies to all concrete masonry units.

Pause for Questions

Stucco on Block - Orlando Winter

Interior XPS Insulation Attached Directly to Block

_	Component Name	Thiskness	Value	Don	Interfa	Temp	erature Dewpnt	Accum (cz.day-sqfi)
_	Component Name	I nickness R	-value	Rep	-A	78.00	53.06	0.000
A	Interior Air Film	0.100	0.68	0.001	AB	74.17	53.06	0.000
B	Latex Paint 2 Coat	0.050	0.01	0.500	BC	74 12	52 71	0.000
C	Drywall .5in	0.500	0.45	0.014	CD	71 59	52.70	0.000
D	Wall Air Space Reflect	0.750	2.80	0.006	DE	55.84	52.69	0.000
E	TUFF-R Insulation	0.750	5.00	30.000	FF	27.71	16.48	0.000
F	Block Cinder & Gravel	8.000	1.10	0.400		21.52	15.48	0.000
G	Stucco	0.625	0.10	0.030	CH	20.06	15.40	0.000
Η	Outside Air Film Winter	0.100	0.17	0.001		20.00	15.40	0.000
1					IJ			
J					JK			
K					KL			
L					- L-			
	TOTAL	10.875	10.31	30.952	-		L	

Stucco on Block -Orlando Summer

Interior XPS Insulation Attached Directly to Block

_	Common and Name	Thickness	D Value	Den	Interfa	Temp ce Actual	erature Dewpnt	Accum (cz/day-sqft)
_	Component Name	Inickness	R-value	кер	A	74.00	51.33	0.000
A	Interior Air Film	0.100	0.68	0.001	AB	75.78	51.33	0.000
В	Latex Paint 2 Coat	0.050	0.01	0.500	BC	75.81	52.60	0.000
C	Drywall .5in	0.500	0.45	0.014	CD	76.00	52.03	0.000
D	Wall Air Space Reflect	0.750	2.80	0.006	DE	94.32	52.74	0.000
E	TUFF-R Insulation	0.750	5.00	30.000	EE	07.41	03 33	0.000
F	Block Cinder & Gravel	8.000	1.10	0.400	EG	100.20	03.64	0.000
G	Stucco	0.625	0.10	0.030		100.29	03.66	0.000
H	Outside Air Film Winter	0.100	0.17	0.001		100.00	93.00	0.000
1					< <u> </u>	101.00	93.07	0.000
					€ IJ			
					 ✓ JK 			
K					KL			
L					- L-			
	TOTAL	10.875	10.31	30.952	the second se			

Stucco on Block – Orlando Summer

Interior XPS Insulation Over Furring on Block

	A				Interface	Temp	erature Dewpnt	Accum (cz.day-sqft)
	Component Name	Thickness	R-Value	Rep	A- H	74.00	51.33	0.000
A	Interior Air Film	0.100	0.68	0.001	AB	75 78	51 33	0.000
B	Latex Paint 2 Coat	0.050	0.01	0.500	BC	75.81	52.69	0.000
C	Drywall .5in	0.500	0.45	0.014		76.00	52.72	0.000
D	TUFF-R Insulation	0.750	5.00	30.000		90.08	03.32	* 0.010
E	Wall Air Space Reflect	0.750	2.80	0.006	FF	07.41	03 33	0.000
F	Block Cinder & Gravel	8.000	1.10	0.400	FG	100 20	03.64	0.000
G	Stucco	0.625	0.10	0.030	GH	100.25	03.66	0.000
Η	Outside Air Film Winter	0.100	0.17	0.001		101.00	93.67	0.000
I						101.00	30.01	0.000
J					JK IK	*****		
K								
L						*****		
	TOTAL	10.875	10.31	30.952	-	L		

					1	Interface	Tempe Actual	erature Dewpnt	Accum (cz/dsy-sqit)
	Component Name	Thickness	R-Value	Rep	-	-A	72.00	46.39	0.000
A	Interior Air Film	0.100	0.68	0.001		AB	70 56	46 38	0.000
в	Latex Paint 2 Coat	0.050	0.01	0.500		BC	70.54	43.76	0.000
C	Drywall .5in	0.500	0.45	0.014			60.50	43.60	0.000
D	R-13 Fiberglass Batt	3.500	13.00	0.010	C		42.07	43.03	* 0.002
E	OSB at 7/16 in	0.438	0.70	1.500		FF	40.50	34.00	0.002
F	WEATHERMATE Housewrap	0.010	0.01	0.130			40.53	32.00	0.000
G	Stucco	0.625	0.10	0.030			40.37	32.39	0.000
Η	Outside Air Film Winter	0.100	0.17	0.001	E	HI	40.00	32.75	0.000
I						11	40.00	02.10	0.000
J									
K						KI			
L									
	TOTAL	5.323	15.12	2.186				L	

R-13 Batt Insulation Between the Wood Studs

Florida Masonry and Stucco

Standing the "Test of Time"

Bond, Bond & More Bond

Masonry & Stucco Do's & Don'ts

DO - Bond, Bond, Bond – and more bond. Open texture block (if available) to achieve mechanical and chemical bond.

DO - Line up your stucco joints with your block control joints. NO OTHER JOINTS ARE REQUIRED IN STUCCO APPLIED DIRECTLY TO THE BLOCK.

Masonry and Stucco Do's and Don'ts

- DO Make sure you have the proper control joints in the block work. Cracks leak. This is just as true for Single Wythe walls.
- DO Use a "top of the line" Acrylic paint
- DON'T use integral water proofing in the block. It will eliminate suction bond which is very important.
- DON'T use lath unless absolutely necessary. Direct applied to the concrete or masonry substrate is the industry's recommendation.

What to do when stucco must be adhered to a smooth surface

- <u>Prohibit</u> "floating" or "sponging" of wall.
- Thoroughly clean substrate. Cleaner should be on the acid side to remove latent cement dust and particles.
- Dampen substrate (stucco contractors tend to over wet stucco mix if substrate is too dry).
- Make sure that a "suction bond" is available (does the surface absorb water?)

What to do when stucco must be adhered to a smooth surface

- Use a non-re-emulsifiable (non-re-wettable) bonding agent meeting the requirements of ASTM C 932 (stucco must be applied while bonding agent is "tacky").
- As an alternate to a surface applied bonding agent replace 1/3 of mix water of scratch coat with ASTM 932 bonding agent (check product manufactures recommendations for this use).

Thank you! Any other Questions?

